Critical Surfaces for General Bond Percolation Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bond percolation critical probability bounds for three Archimedean lattices

Rigorous bounds for the bond percolation critical probability are determined for three Archimedean lattices: .7385 < pc((3, 12 ) bond) < .7449, .6430 < pc((4, 6, 12) bond) < .7376, .6281 < pc((4, 8 ) bond) < .7201. Consequently, the bond percolation critical probability of the (3, 12) lattice is strictly larger than those of the other ten Archimedean lattices. Thus, the (3, 12) bond percolation...

متن کامل

Self Organized Critical Dynamics of a Directed Bond Percolation Model

We study roughening interfaces with a constant slope that become self organized critical by a rule that is similar to that of invasion percolation. The transient and critical dynamical exponents show Galilean invariance. The activity along the interface exhibits nontrivial power law correlations in both space and time. The probability distribution of the activity pattern follows an algebraic re...

متن کامل

Anisotropic bond percolation

We introduce anisotropic bond percolation in which there exist different occupation probabilities for bonds placed in different coordinate directions. We study in detail a d-dimensional hypercubical lattice, with probabilities p I for bonds within (d 1)-dimensional layers perpendicular to the z direction, and p11= Rp, for bonds parallel to z . For this model, we calculate low-density series for...

متن کامل

Universality for Bond Percolation in Two Dimensions

All (in)homogeneous bond percolation models on the square, triangular, and hexagonal lattices belong to the same universality class, in the sense that they have identical critical exponents at the critical point (assuming the exponents exist). This is proved using the star–triangle transformation and the box-crossing property. The exponents in question are the one-arm exponent ρ, the 2j-alterna...

متن کامل

Bond percolation on multiplex networks

We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2008

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.100.185701